Volatile Compounds Selection via Quantile Correlation and Composite Quantile Correlation: A Whiting Case Study

نویسندگان

  • Ibrahim Sidi Zakari
  • Assi N’guessan
  • Alexandre Dehaut
  • Guillaume Duflos
چکیده

The freshness and quality indices of whiting (Merlangius merlangus) influenced by a large number of chemical volatile compounds, are here analyzed in order to select the most relevant compounds as predictors for these indices. The selection process was performed by means of recent statistical variable selection methods, namely robust model-free feature screening, based on quantile correlation and composite quantile correlation. On the one hand, compounds 2-Methyl-1-butanol, 3-Methyl-1butanol, Ethanol, Trimethylamine, 3-Methyl butanal, 2-Methyl-1-propanol, Ethylacetate, 1-Butanol and 2,3-Butanedione were identified as major predictors for the freshness index and on the other hand, compounds 3-Methyl-1-butanol, 2-Methyl-1butanol, Ethanol, 3-Methyl butanal, 3-Hydroxy-2-butanone, 1-Butanol, 2,3-Butanedione, 3-Pentanol, 3-Pentanone and 2-Methyl-1-propanol were identified as major predictors for the quality index.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable screening via quantile partial correlation.

In quantile linear regression with ultra-high dimensional data, we propose an algorithm for screening all candidate variables and subsequently selecting relevant predictors. Specifically, we first employ quantile partial correlation for screening, and then we apply the extended Bayesian information criterion (EBIC) for best subset selection. Our proposed method can successfully select predictor...

متن کامل

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

Quantile hydrologic model selection and model structure deficiency assessment: 2. Applications

[1] Quantile hydrologic model selection and structure deficiency assessment is applied in three case studies. The performance of quantile model selection problem is rigorously evaluated using a model structure on the French Broad river basin data set. The case study shows that quantile model selection encompasses model selection strategies based on summary statistics and that it is equivalent t...

متن کامل

Semi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses

Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...

متن کامل

Variable Selection for Nonparametric Quantile Regression via Smoothing Spline AN OVA.

Quantile regression provides a more thorough view of the effect of covariates on a response. Nonparametric quantile regression has become a viable alternative to avoid restrictive parametric assumption. The problem of variable selection for quantile regression is challenging, since important variables can influence various quantiles in different ways. We tackle the problem via regularization in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016